
VII. SUPPLEMENTARY

A. Details of the U-Net inspired attention mechanism

Recall that in Section III of the main paper, we had
used joint trainable parameters of a U-Net inspired ar-
chitecture with shared encoder weights for determining
Fvalue, Fquery, Fkey. In this subsection we elaborate more
on this architecture and its implementation.

The idea of U-Attention originates from first integrating
together the characteristics of TransformerConv[13] and
EdgeConv[14]. TransformerConv applies attention on the
neighbouring nodes but does not concatenate information of
the ego-node. In contrast, EdgeConv concatenates relative
information of the neighbouring nodes with that of the ego-
node. However, information aggregation is done without
deciding which node to pay more attention to. Our first
step is to first combine these two ideas, i.e.:

F l+1
Att (zli, z

l
j) = W l

self ·zli +
∑
j∈Ni

αij ·Wvalue(z
l
i|zli−zlj) (9)

where αij =
Wquery(z

l
i)

T ·Wkey(z
l
j)∑

k∈Ni
Wquery(zl

i)
T ·Wkey(zl

k)
and

Wvalue,Wquery,Wkey are the trainable parameter matrices.
For simplicity, we set xlj = (zli|zli − zlj). If we only consider
operations within a layer, we can eliminate the need for the
layer index l, so xlj can be further simplified to xj . The key,
query and value of xj is respectively denoted by Kj , Qj

and Vj . In the traditional transformer block, Kj , Qj and Vj
can be calculated by Kj = Wkey · xj , Qj = Wquery · xj and
Vj = Wvalue · xj .

Next step, we look at the formulation of self-attention
weights αij :

αij =
KT

j ·Qj∑
k∈Ni

KT
k ·Qj

=
(Wkey · xj)T · (Wquery · xj)∑

k∈Ni
(Wkey · xk)T · (Wquery · xj)

=
xTj · (WT

key ·Wquery) · xj∑
k∈Ni

xTk · (WT
key ·Wquery) · xj

(10)

Note that we can treat the matrix multiplication (WT
key ·

Wquery) in the above equation as a single entity, in which
the output has the same dimension as the input just as in
the case of an autoencoder. Here we can treat Wkey as the
encoder while Wquery as the decoder. Both the encoder and
the decoder have only one single linear layer without any
non-linearity. Inspired by this interpretation, we use the auto-
encoder to directly calculate attention α. Skip connections are
added between the encoder and decoder for stability. With
these changes we have the neural networks Fquery, Fkey

instead of the original matrices Wkey and Wquery and
Equation 10 is modified to:

αij =
Fquery(Fkey(xj))

T · xj∑
k∈Ni

Fquery(Fkey(xk))T · xj

=
Fquery key(xj))

T · xj∑
k∈Ni

Fquery key(xk))T · xj

(11)

Meanwhile, the second term of Equation 9 can be re-written
as: ∑

j∈Ni

αij ·Wvalue(zi|zi − zj) =
∑
j∈Ni

αij ·Wvalue · xj

=
∑
j∈Ni

αij · Vj

(12)

where αij is calculated by a U-net attention network described
earlier. It is easy to notice that this U-net has a latent
vector Fkey(xj) at the output of the encoder, which already
encodes information about xj . This information can be used to
determine the value V as it is also a function of xj . Originally,
the value V is given by a simple matrix multiplication between
the input xj and the matrix Wvalue. Instead of this we pass
the the latent vector Fkey(x) through an independent decoder
Fvalue to determine the value of V . Skip connections are
additionally added from encoder Fkey to this decoder head
Fvalue. So the value can be calculated by:

Vi = Fvalue(Fkey(xj))

= Fvalue key(xj)
(13)

Hence, by replacing the linear layers Wkey, Wquery and
Wvalue in Equation 9 with Equation 11 and Equation 13, we
will get the final equation of our model Equation 2. Figure 4
shows the schematic of our U-Attention Block.

B. Ablation studies on the contribution of the different
components of the model

In Subsection VII-A, we described the two important
adjustments to our architecture which differentiates it from
TransformerConv [13]. First, we concatenate the relative
information of neighbouring node with the information
of self node. Next, we replaced the normal transformer
block with the U-Attention block. In this subsection, we
investigate the contribution of each of these adjustments on
the overall performance. Therefore, we conduct an additional
ablation study where our model is compared against one that
removes the U-Attention structure and another that does not
concatenate information from the self-node for determining
attention weights. Eliminating both adjustments collapses our
model to being TransformerConv. The training was done on
the same dataset as described in the main paper. Table II
shows the performance of these model variants on different
vehicle/obstacle combinations.

From Table II, we notice that, adjusting the attention block
to remove the U-Net architecture but keeping the concate-
nation leads to a drop in performance. This demonstrates
the importance of using the U-Net architecture, without
which performance deteriorates. The reason is that the
traditional TransformerConv architecture only uses a simple
linear transform WT

key ·Wquery to align the key and query.
This is apparently not powerful enough to extract sufficient
information when calculating attention. By adjusting the
attention block to a U-Net architecture, the network in the
attention block is much more powerful. So it is capable



Fig. 4: Schematics of the U-Attention Block

success to goal rate collision rate
Num. Veh. Num. Obs. Our Model Remove Concatenation Remove U-Net TransformerConv Our Model Remove Concatenation Remove U-Net TransformerConv

1 0 1.0000 0.9847 0.9990 0.9894 - - - -
1 1 0.9677 0.9161 0.7307 0.7580 4.9616E-05 8.9603E-04 5.1616E-03 5.3226E-03
1 2 0.8991 0.8109 0.5583 0.5721 3.3231E-04 2.2233E-03 1.1090E-02 1.1451E-02
1 3 0.8127 0.7093 0.4677 0.4929 6.6306E-04 3.9955E-03 1.5917E-02 1.6024E-02
1 4 0.7361 0.6302 0.3764 0.3922 1.2774E-03 5.4084E-03 2.1584E-02 2.1938E-02
2 0 0.9984 0.9702 0.6472 0.6600 1.1006E-05 6.0761E-04 8.0570E-03 7.6941E-03
2 1 0.9634 0.8688 0.5940 0.6219 1.6017E-04 3.0018E-03 1.0235E-02 9.6096E-03
2 2 0.8676 0.7810 0.5425 0.5624 4.5357E-04 4.6598E-03 1.3381E-02 1.2796E-02
2 3 0.7792 0.6955 0.5142 0.5209 6.7795E-04 6.4930E-03 1.6038E-02 1.6039E-02
2 4 0.6781 0.6135 0.4899 0.4982 1.1135E-03 8.2745E-03 1.9067E-02 1.8711E-02
3 0 0.9943 0.8107 0.4129 0.4339 8.8107E-05 3.7200E-03 1.4707E-02 1.4047E-02
3* 1* 0.9706 0.7489 0.3950 0.4193 3.0382E-04 5.2493E-03 1.6100E-02 1.5655E-02
3* 2* 0.9302 0.7006 0.3897 0.4174 5.9881E-04 6.6222E-03 1.7780E-02 1.7393E-02
3* 3* 0.8903 0.6503 0.3754 0.4023 8.9677E-04 7.9807E-03 2.0166E-02 1.9646E-02
3* 4* 0.8328 0.6161 0.3554 0.3834 1.6090E-03 9.2047E-03 2.2478E-02 2.2045E-02
4* 0* 0.9807 0.6607 0.2894 0.2895 2.7650E-04 6.5573E-03 2.0186E-02 1.9967E-02
4* 1* 0.9550 0.6185 0.2701 0.3048 5.7179E-04 7.8322E-03 2.1356E-02 2.0446E-02
4* 2* 0.9279 0.5804 0.2773 0.2905 9.4375E-04 8.7571E-03 2.1877E-02 2.1960E-02
4* 3* 0.8853 0.5426 0.2773 0.2864 1.4612E-03 1.0007E-02 2.3559E-02 2.3747E-02
5* 0* 0.9590 0.5322 0.1890 0.1973 5.8217E-04 9.1856E-03 2.6257E-02 2.5964E-02
5* 1* 0.9285 0.4856 0.1934 0.2078 1.0483E-03 1.0374E-02 2.6303E-02 2.6115E-02
5* 2* 0.9037 0.4759 0.2078 0.2125 1.4063E-03 1.0754E-02 2.6261E-02 2.6607E-02
6* 0* 0.9209 0.4128 0.1300 0.1347 1.1376E-03 1.1734E-02 3.1954E-02 3.1612E-02
6* 1* 0.8949 0.3916 0.1419 0.1556 1.5096E-03 1.2351E-02 3.0973E-02 3.0917E-02
6* 2* 0.8717 0.3738 0.1423 0.1479 1.8932E-03 1.2905E-02 3.1218E-02 3.1828E-02

TABLE II: An ablation study showing the performance of the four variants of our model: Full Version of Our Model, Our
Model without concatenation, Our Model with the U-Net structure removed and the original version of TransformerConv
[13]). The metrics used for benchmarking are success-to-goal rate and collision rate. The evaluation is done on a completely
unseen test data comprising of scenarios with 1-6 vehicles and 0-4 obstacles as shown by the corresponding rows. Each row
in the table is evaluated on 4062 scenarios. The rows labeled with an asterisk (*) are those vehicle-obstacle combinations
that were not even in the training set. The training set only comprised of 1-3 and 0-4 obstacles.

of extracting more rich and representative features which
facilitates computing a more accurate attention value.

Similar observation holds for when using only the U-Net
architecture but removing the concatenation. The performance
again deteriorates demonstrating the significance of using
concatenation. True performance gains are only realized
when both the concatenation and U-Net architecture are used
together in conjunction.

C. Run Time Comparison

An advantage of our GNN model against traditional
optimization based techniques is faster inference. Moreover, as
the number of vehicles/obstacles is increased, the time taken
by an optimization based procedure to find the correct control
commands rises accordingly. However, with our graphical

based architecture which allows parallel computations, the
inference time remains fairly consistent. To demonstrate this,
we run both the optimization method and our GNN model
with increasing number vehicles and obstacles. For each
vehicle/obstacle combination, we choose 100 cases from test
dataset.

Note that an increase in the distance between start and
destination state as well as the position of the static obstacles
will influence the length of the trajectory and thereby increase
the prediction run time. Therefore, rather than reporting the
time to complete the entire trajectory, we report the average
time to complete one step towards the destination in the
trajectory.

Keeping in line with the main paper, we use the same



Num. Veh. Num. Obs. Optimization Our model (GPU) Our model (CPU)

1 0 0.63230 0.00583 0.00408
1 1 0.73012 0.00781 0.00492
1 2 0.74968 0.00791 0.00522
1 3 0.75063 0.00800 0.00541
1 4 0.79725 0.00792 0.00568
2 0 2.74806 0.00783 0.00515
2 1 3.10209 0.00797 0.00570
2 2 3.06539 0.00797 0.00590
2 3 2.96316 0.00799 0.00634
2 4 2.96338 0.00799 0.00673
3 0 5.48114 0.00795 0.00591
3* 1* - 0.00804 0.00686
3* 2* - 0.00801 0.00607
3* 3* - 0.00799 0.00609
3* 4* - 0.00818 0.00635
4* 0* - 0.00798 0.00577
4* 1* - 0.00854 0.00622
4* 2* - 0.00864 0.00657
4* 3* - 0.00862 0.00679
5* 0* - 0.00857 0.00644
5* 1* - 0.00830 0.00692
5* 2* - 0.00886 0.00741
6* 0* - 0.00886 0.00732
6* 1* - 0.00902 0.00780
6* 2* - 0.00883 0.00808

TABLE III: Shows the average run time per step for the
optimization based procedure and our GNN model. Note that
our model takes less than 10 milliseconds to get a prediction
for a scenario with 6 vehicles and 2 obstacles. Meanwhile, the
optimization takes more than half second (632 milliseconds)
even for the simplest case with 1 vehicle and no obstacle.

parameters for online inference here as we did for offline
optimization for the purpose of label generation. The resource
we use for computation is an Intel Core i7-10750H. Table
III reports the run time for both the optimization based
method and our model. Our model involves multiple parallel
computations and can therefore be readily be deployed on
a GPU too. Runtime performance of our our model on a
GeForce RTX 2070 GPU are also reported in the table.

From the results in Table III, it is evident that our model
takes less than 10 milliseconds to get a prediction even for
a scenario with 6 vehicles and 2 obstacles. Meanwhile, the
optimization takes more than half second (632 milliseconds)
even for the simplest case with 1 vehicle and no obstacle.
There are two main reasons why the optimization runs much
slower than our model. Firstly, the optimization procedure
needs to be completed in real-time during inference, while
our GNN model has already optimized its parameters during
the training process. Although it takes longer to train the
GNN model but once the parameters of the GNN are fixed, it
is only a matter of using these pretrained weights at inference
time. But for optimization, each inference is a new problem,
which needs to be iteratively solved at each step and thereby
accumulating the total time consumed. Besides, optimization
uses a receding horizon strategy. This means in order to
execute one step, we still need to predict and calculate many
steps ahead, which is not an effective use of computation. But
these calculations are necessary, otherwise the optimization
would not be able to look ahead in order to take preemptive
action to avoid collision in advance. One can reduce the
prediction horizon, but it may lead to a sub-optimal trajectory.

Another important point worth noticing, is that when the

task gets more complex from 1 vehicle and 0 obstacle to 6
vehicles and 2 obstacles, the prediction run time of our GNN
model only goes up marginally. But for optimization, the
prediction run time increase dramatically when the number
of vehicles increases. This is expected, because more vehicles
means more constraints to be optimized for. Lastly, note that
our model runs faster on the CPU than on the GPU. That is
because during inference, the batch size is 1. Therefore, the
advantage of parallelism gained from a forward pass on one
sample does not compensate for the time it takes to transfer
data between the CPU and GPU memory. Nevertheless, the
model is still faster than compared with the optimization
procedure. Moreover, GPU’s are still advantageous during
training wherein large batch sizes can be processed.

D. Breakdown of the training data

Note that Subsection IV-A mentioned that the training
data for which labels are generated contain between 1-
3 vehicles and 0-4 static obstacles, for a total of around
20,961 trajectories. The start and destination states of the
vehicles/obstacles are generated at random. Each trajectory
is collected for 120 timesteps. Therefore, the total number
of scenarios generated are 2,515,320. A breakdown of this
number for the different number of vehicles (1-3) and static
obstacles (0-4) is shown in Table IV. As we saw in Subsection
VII-C, increasing the number of vehicles/obstacles beyond
what is enumerated in Table IV, significantly slows down
the optimization for determining the optimal control values
during this data and label generation process. Nevertheless,
we demonstrated in Table III that our model is still powerful
enough to make fast inference for up to 6 vehicles. This is
despite being trained with data that had a maximum of 3
vehicles.

Num. Veh. Num. Obs. Num. Traj. Num. Case

1 0 1000 120000
1 1 1200 144000
1 2 1800 216000
1 3 2699 323880
1 4 3289 394680
2 0 2000 240000
2 1 600 72000
2 2 1199 143880
2 3 1794 215280
2 4 2380 285600
3 0 3000 360000

TABLE IV: Amount of Ground Truth Data collected for 1-3
vehicles and 0-4 obstacles

When running the optimization, we set the prediction
horizon to be 20. The steering angle is bounded within a
range of -0.8 to 0.8 radians while the pedal acceleration is
bounded between -1 to 1. Additional data is collected to make
the model more robust to deviations at inference time. We
simulate the vehicles diverging to random offset locations by
adding noise on the position and orientation of the vehicle.
After executing the first control command optimized for the



the entire horizon, we add a random Gaussian noise on the
position and orientation of the vehicle. The variance of the
Gaussian noise decreases over time as the vehicle approaches
the target position. This is to ensure that the vehicle can
eventually reach its destination with minimal deviation.

Also note that, when training the model, we treat the static
obstacle nodes as a special type of vehicle that has zero
velocity and for which the current state is the same as the
target state. The control command output by the model for
such static obstacle nodes is zero for both the steering angle
and pedal acceleration. Treating the obstacle nodes in this
manner can help the model learn to cause the actual dynamic
vehicles to not overshoot but remain stationary once they
have reached their respective target state.

To train the neural network, we use the Adam optimizer
with an initial learning rate of 0.01 and weight decay of
1e-6. The learning rate is reduced by factor of 0.2 from its
previous value, if the validation loss does does not reduce for
15 epochs. The number of training epochs is set to be 500
but training is prematurely stopped, if there is no decrease
in the validation loss for 50 epochs.

E. Conservative optimization behaviour

Note that the success-to-goal rate for our model is not
a perfect score of 1. The reason the model fails to always
reach the target destination is because it tends to behave
conservatively. Rather than taking the risk of collision, it
sometimes stops mid-way before other objects to avoid
collision. This is because the ground truth data obtained
from the optimization is not always prefect. Figure 5 shows
an example of such conservative behaviour wherein the
optimization failed to produce the requisite control commands
to reach the target. Rather, the vehicle gets stuck midway.
Nevertheless, it is important to keep such failed samples in
the dataset for training as they teach the model to learn to
stop before other objects to avoid collision. If these failure
samples are removed from the training set, then the model
performs worse as it starts colliding with other obstacles.

Fig. 5: An example of a conservative optimization yielding
a sample trajectory wherein the vehicles halt rather than take
the risk of collision in an attempt to reach their destination
by trying to pass between the two obstacles.


