
VI. SUPPLEMENTARY

A. Further Explanation of MA-DV2F

In this Subsection, we further elaborate some the design
choices for Equation 2 used to determine the reference
orientation. The Equation is repeated here again for clarity:

u
(i)
tar =

{
funi(X

(i)
tar) · ξ(i)tar ‖X(i)

tar‖2 > rp

funi(U
(i)
tar + λ

(i)
tar · funi(X

(i)
tar)) otherwise

λ
(i)
tar = (

‖X(i)
tar‖2
rp

+ fpos(‖X(i)
tar‖2 − εp)) · fsgn(X

(i)
tar

T
·U(i)

tar)

ξ
(i)
tar =

{
1 ‖X(i)

tar‖2 ≥ 0.5 · v2d + rp

fsgn(X
(i)
tar

T
·U(i)

t) otherwise

(a) Keep Reference Orientation (b) Reverse Reference Orientation

Fig. 5: Shows the two different circumstances of the ego-
vehicle overshooting its target and entering the marginal
parking region (shaded blue region). In Subfigure (a), The ref-
erence orientation vector uref = funi(X

(i)
tar) points towards

the target, while the current vehicle orientation is opposite
to the reference orientation. Thus, the vehicle needs to turn
around again to match the reference orientation. In Subfigure
(b), the reference orientation vector uref = −funi(X(i)

tar) is
flipped based on the current vehicle orientation. In this case,
the vehicle does not need to turn around but directly move
backwards to the target.

Circular Motion Prevention: Equation 2 shows that when
the ego-vehicle i is far away from the parking threshold, the
reference orientation is in the direction of X

(i)
tar. However,

as the ego-vehicle approaches the target and the velocity is
high, then the vehicle might overshoot the target and enter
the shaded marginal parking threshold region causing the
current ego-vehicle orientation U

(i)
t to be opposite to X

(i)
tar

as seen in the left of Figure 5. This will make the vehicle
go in circles in an attempt to align itself with the reference
orientation. A better alternative would be switch the reference
orientation direction so that it is aligned with the ego-vehicle
orientation and drive the car in reverse as shown in the
right of Figure 5. This is done by dynamically switching
the reference orientation depending on the sign of the dot
product: fsgn(X

(i)
tar

T
.U

(i)
t).

(a) Without Refining Item (b) With Refining Item

Fig. 6: Shows the reference orientations near the target
with/without the refining item fpos(‖X(i)

tar‖2 − εp) in λ
(i)
tar

in Equation 2. Subfigure (a) shows the situation without the
refining item. The reference direction arrows in the left side or
right side of the target position are more parallel to the target
direction. This will lead to the vehicle shaking forwards and
backwards there rather than approaching the target. Therefore,
the refining item fpos(‖X(i)

tar‖2 − εp) is added to λ(i)tar. The
new reference direction arrows shown in Subfigure (b) have
more biases towards the target position, which can accelerate
the parking process.

Parking behaviour Refinement: In Equation 3, an additional
term: fpos(‖V(i)

tar‖2 − εp) was introduced in λ
(i)
tar to refine

the parking behavior when the vehicle position is exactly
on either the left or the right side of the target. As can
be seen in Figure 6, this additional refinement term causes
the reference orientation to be more biased towards the
target position within the parking region. The ego vehicle
aligns itself better to the reference orientation there, while
simultaneously allowing it to reach the final target quicker.
Removing this term would make the reference orientations
rather parallel to the final target causing the ego vehicle to
oscillate forward and backwards around the target leading to
a longer parking time. This is particularly true when the ego
vehicle position is exactly to the left or to the right side of
the target.

B. Self-supervised Training of GNN Model

The reference steering angles ϕ(i)
t and reference pedal

acceleration p(i)t mentioned in Section III cannot only be used
to control the vehicles directly, but also as labels to supervise
training of the GNN model. This approach can therefore
additionally be used to train a learning based Graphical
Neural Network (GNN) controller in a self-supervised manner
using these control labels and network architecture given in
[12]. However, [12] requires running an optimization based
procedure offline to collect enough training data with ground
truth labels. This is a computationally expensive and slow
process when the number of agents are large. In contrast, our
self-supervised learning method is capable of directly training
the model online during the simulation process without
collecting ground truth labels beforehand. Note that in [12],

Fig. 7: Shows the pipeline of the self-supervised learning
part. The model is trained by running simulation on different
training cases without existing labels. For the simulation with
T steps in total, at each step of the simulation, the DV2F are
calculated for all the vehicles. For each vehicle, its DV2F
gives the reference control variables as training labels. At the
same time, the state of the vehicles and the obstacles will be
inputted to the training model, obtaining the predicted control
variables from the model. Then, the loss is calculated based
on the reference and predicted control variables and back-
propagated to update the weights of the model. The predicted
control variables will also be passed to the vehicle kinetic
equation to update the vehicle states for the next simulation
step. This process iterates until finishing this simulation turn.

all the vehicle nodes in the GNN model will have incoming
edges from any other vehicle or obstacle nodes. In this case,
the number of edges in the graph will grow quadratic to the
number of agents(neighbouring vehicles/obstacles), leading
to a heavy computational burden when when scaling to more
agents. Thus, we remove edges between the neighboring
agent j and the ego vehicle i if the distance ‖X(i)

j ‖ between
them is greater than the threshold given by:

D
(i)
j =

{
r
(j)
obs + rveh + |v(i)t |+ 2 · rc j is an obstacle

2 · rveh + |v(i)t |+ |v
(j)
t |+ 2 · rc j is a vehicle

(11)

Training Pipeline: The self-supervised learning pipeline
is shown in as Figure 7. At the start of training, different
training samples with multiple agents placed at random
positions are generated as the start points of the DV2F
simulations. Each sample only contains the states of the

vehicles and static obstacles without any control labels.
At each step during the simulation, the reference control
variables of each vehicle is determined online using the DV2F
according to the states of the vehicles and obstacles at that
time. The loss is calculated on the fly based on the reference
control variables and the predicted control variables by the
model. This loss is then back-propagated to update the model
immediately at the current step. Unlike [12] which solves the
individual optimization problem for each case one-by-one,
our dynamic velocity vector field determines reference
control variables in a closed-form solution. Thus, we can
run one simulation with multiple cases as a batch running in
parallel, and then change to another batch for the next turn
of simulation until finishing all the training cases as an epoch.

Loss Function: The dynamic velocity vector field gives a
low reference speed limited by |vd|. However, if the vehicle
is still far away from its target and has low risk to colliding
with other agents, the speed limit of |vd| can be removed
allowing the vehicle to move faster to its target. To this end,
we first define a vehicle state cost to evaluate vehicle control.
Assume the current vehicle position (x

(i)
t , y

(i)
t), orientation

θ
(i)
t and speed v

(i)
t are fixed, for the given vehicle control

variables ϕ(i)
t and p(i)t , we first apply the vehicle kinematic

equation to obtain x
(i)
t+2, y(i)t+2, θ(i)t+1 and v

(i)
t+1. We redefine

‖X(i)
tar‖, ‖X

(i)
obsj
‖ and ‖X(i)

vehj
‖ for the time t+2. The vehicle

state cost C(ϕ
(i)
t , p

(i)
t) is then calculated as follows:

C = Ctar + Cobs + Cveh

Ctar = ‖X(i)
tar‖2

Cobs =

Nobs∑
j=1

f2max(−α(i)
obsj

, 0) + fmax(−α(i)
obsj

, 0)

Cveh =

Nveh∑
j=1,j 6=i

f2max(−α(i)
vehj

, 0) + fmax(−α(i)
vehj

, 0)

(12)

where α(i)
obsj

= ‖X(i)
obsj
‖2 − r(j)obs − rveh − (rc + |v(i)t |) and

α
(i)
vehj

= ‖X(i)
vehj
‖2− 2 · rveh− (rc + |v(i)t |) are defined same

as in Equation 3 mentioned in Section III-B, Ctar measures
the distance of the ego vehicle i to its target, and Cobs and
Cveh evaluate the collision risk of the ego vehicle. The
gradient of this vehicle state cost should alone be enough to
guide the GNN model in learning to reach the target while
avoiding collisions. However, in practice, the GNN does
not converge to the optimal due to high non-linearities in
Equation 12. Therefore, we combine this equation with the
labels obtained from the dynamic velocity vector field which
expedites the model training.

The overall loss function used in this pipeline is defined
as follows:

L = Lsteer + Lpedal

Lsteer = (ϕ
(i)
t − ϕ̃

(i)
t)2

Lpedal =

{
∆C + fpos(∆C) · (∆C)2 α

(i)
tar ∧ β

(i)
tar

(p
(i)
t − p̃

(i)
t)2 otherwise

∆C = C(ϕ
(i)
t , p̃

(i)
t)− C(ϕ

(i)
t , p

(i)
t)

α
(i)
tar = ‖X(i)

tar‖2 − |ṽ
(i)
t+1| − rp > 0

β
(i)
tar = (|ṽ(i)t+1| > vd) ∧ (|v(i)t+1| = vd) ∧ (ṽ

(i)
t+1 · v

(i)
t+1 > 0)

(13)

where the ϕ(i)
t , p(i)t and v

(i)
t+1 are the reference steering

angle, reference pedal and calculated reference speed from
dynamic velocity vector field, the ϕ̃

(i)
t , p̃(i)t and ṽ

(i)
t+1 are

the corresponding values predicted by the GNN model.
During training, the steering angle ϕ̃(i)

t is fully supervised by
reference steering angle ϕ(i)

t . However, the pedal acceleration
loss comprises one of two parts depending on the condition of
the vehicle. If the vehicle is far way from the parking region,
i.e. ‖X(i)

tar‖2−|ṽt+1|−rp > 0, and the default reference speed
vd limits the predicted speed, i.e. (|ṽt+1| > vd) ∧ (|vt+1| =
vd) ∧ (ṽt+1 · vt+1 > 0), then the pedal loss is supervised
by the relative vehicle state cost C(ϕ

(i)
t , p̃

(i)
t)−C(ϕ

(i)
t , p

(i)
t).

This allows the vehicle to speed up when no other agents are
nearby and slow down when getting close to other objects or
its target. Otherwise, the pedal acceleration loss is supervised
by the reference pedal p̃(i)t . Note that we use the reference
steering angle ϕ(i)

t rather than the predicted steering angle
ϕ̃
(i)
t to calculate the vehicle state cost.

C. Training & Test Data Generation

The advantage of our self-supervised approach is that the
data for training the GNN model can be generated on the fly,
since it does not require supervised labels. However, for the
purpose of reproducibilty of our experiments, we generate
date beforehand. One common option is to generate the
samples by choosing a vehicle’s starting and target positions
randomly on the navigation grid. However, the risk with this
approach is that the dataset might be heavily skewed in favour
of one scenario and may not capture other types of situations
that the vehicle is expected to encounter. In contrast, our
training regime is developed to handle these diverse situations.
These situations can primarily be segregated into 3 modes:
collision, parking and normal driving. In the collision mode,
the vehicles are placed such that they have a high probability
of collision. This is done by first randomly choosing a point
on the grid, defined as a ”collision center”. The starting and
target position of at least two vehicles are placed on opposite
sides of this collision center with slight random deviation.
Hence, the model will be pushed to learn a collision avoidance
maneuver. Meanwhile, in the parking mode, the target position
for each vehicle is sampled near its start position (within a
distance of 10m). Note that in both the collision and parking
modes, the position of the vehicles are also chosen randomly
but with certain constraints i.e. starting and target positions

being on the opposite sides of collision center (collision
mode) or in close proximity (parking mode). In the normal
driving mode, the starting and target positions are chosen
randomly without any of the constraints described earlier.
Lastly, for all modes the following additional conditions are
to be fulfilled: No two target or two staring positions of
vehicles can overlap. Likewise, if there are static obstacles,
the starting/target positions cannot overlap with it. The starting
position can be placed within an obstacle’s circle of influence
but not a target position, since then the vehicle will struggle
attaining equilibrium. The target position will attract the
ego-vehicle whereas the obstacle influence will repel it.
Our training dataset contains training cases from 1 vehicle 0
obstacles to 5 vehicles 8 obstacles, each with 3000 samples
that in turn contains 1000 samples from each of the 3 modes.
Each of these 3000 scenarios serve as the starting point for the
simulation that is run for T = 200 timesteps during training,
in order for the vehicles to reach their target positions. As
mentioned in Section IV-A, we also generate test scenarios
range from 10 vehicles - 0 obstacles to 50 vehicles - 25
obstacles, each with 1000 samples. However, our test dataset
is generated only using the collision mode.

Multiple training samples can be grouped as a batch
and run simultaneously. However, this training simulation
will always end with all the vehicles in the training batch
approaching their targets and parking. To prevent the model
from overfitting on parking behavior, we adopt a asynchronous
simulation during the training. Specifically, a training batch if
further divided into multiple mini-batches. These mini-batches
are in different simulation time steps. In this case, within a
training batch, there are always some training samples just
starting, some driving the vehicles on the way and the rest
parking the vehicles. Besides, for each time step t during
the training simulation, we also perturbs the vehicle state
using a zero-mean Gaussian noise as a data augmentation.
The standard variance decreases linearly along the simulation
time t: σt = T−t

T · [σx, σy, σϕ, σv]T . The validation dataset
reuse the training samples without random perturbation. The
simulation length during validation is reduced to T = 1.

To train the neural network, we use the Adam optimizer
with an initial learning rate of 0.01 and weight decay of
10−6. The learning rate is reduced by factor of 0.2 from its
previous value, if the validation loss does not reduce for 15
epochs. The number of training epochs is set to be 500 but
training is prematurely stopped, if there is no decrease in the
validation loss for 50 epochs.

	Supplementary
	Further Explanation of MA-DV2F
	Self-supervised Training of GNN Model
	Training & Test Data Generation

